

BOOLEAN ALGEBRA

BOOLEAN VALUES

•BOOLEAN VALUES

INTRODUCTION

- Boolean algebra is a form of algebra that deals with single digit binary values and variables.
- Values and variables can indicate some of the following binary pairs of values:
 - ON / OFF
 - TRUE / FALSE
 - HIGH / LOW
 - CLOSED / OPEN
 - 1/0

INTRO. TO COMP. ENG. CHAPTER III-3 BOOLEAN ALGEBRA

BOOL. OPERATIONS

FUNDAMENTAL OPERATORS

•BOOLEAN VALUES -INTRODUCTION

- Three fundamental operators in Boolean algebra
 - NOT: unary operator that complements represented as A, A', or \sim A
 - AND: binary operator which performs logical multiplication
 - i.e. **A** ANDed with **B** would be represented as **AB** or $\mathbf{A} \cdot \mathbf{B}$
 - OR: binary operator which performs logical addition
 - i.e. **A** ORed with **B** would be represented as $\mathbf{A} + \mathbf{B}$

NOT			AND				OR		
Α	A	Α	В	AB		Α	В	$\mathbf{A} + \mathbf{B}$	
0	1	0	0	0		0	0	0	
1	0	0	1	0		0	1	1	
		1	0	0		1	0	1	
		1	1	1		1	1	1	

INTRO. TO COMP. ENG. CHAPTER III-4 BOOLEAN ALGEBRA

BOOL. OPERATIONS

BINARY BOOLEAN OPERATORS

•BOOLEAN OPERATIONS -FUNDAMENTAL OPER.

 Below is a table showing all possible Boolean functions F_N given the twoinputs A and B.

BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

PRECEDENCE OF OPERATORS

•BOOLEAN OPERATIONS -FUNDAMENTAL OPER. -BINARY BOOLEAN OPER.

- Boolean expressions must be evaluated with the following order of operator precedence
 - parentheses
 - NOT Example:
 - AND
 - OR

BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

FUNCTION EVALUATION

•BOOLEAN OPERATIONS •BOOLEAN ALGEBRA -PRECEDENCE OF OPER.

• Example 1:

Evaluate the following expression when A = 1, B = 0, C = 1

$$\mathbf{F} = \mathbf{C} + \overline{\mathbf{C}}\mathbf{B} + \mathbf{B}\overline{\mathbf{A}}$$

• Solution

$$F = 1 + \overline{1} \cdot 0 + 0 \cdot \overline{1} = 1 + 0 + 0 = 1$$

• Example 2:

Evaluate the following expression when A = 0, B = 0, C = 1, D = 1

$$\mathbf{F} = \mathbf{D}(\mathbf{B}\overline{\mathbf{C}}\mathbf{A} + (\mathbf{A}\overline{\mathbf{B}} + \mathbf{C}) + \mathbf{C})$$

Solution

$$\mathbf{F} = \mathbf{1} \cdot (\mathbf{0} \cdot \overline{\mathbf{1}} \cdot \mathbf{0} + \overline{(\mathbf{0} \cdot \overline{\mathbf{0}} + \mathbf{1})} + \mathbf{1}) = \mathbf{1} \cdot (\mathbf{0} + \overline{\mathbf{1}} + \mathbf{1}) = \mathbf{1} \cdot \mathbf{1} = \mathbf{1}$$

INTRO. TO COMP. ENG. CHAPTER III-7	BOOLEAN ALGEBRA BASIC IDENTITIES	•BOOLEAN OPERATIONS •BOOLEAN ALGEBRA -PRECEDENCE OF OPER.
BOOLEAN ALGEBRA		-FUNCTION EVALUATION
$\mathbf{X} + 0 = \mathbf{X}$	$X \cdot 1 = X$	Identity
$\mathbf{X} + 0 = 1$	$\mathbf{X} \cdot 0 = 0$	laonny
$\mathbf{X} + \mathbf{X} = \mathbf{X}$	$\mathbf{X} \cdot \mathbf{X} = \mathbf{X}$	Idempotent Law
X + X' = 1	$X \cdot X' = 0$	Complement
$(\mathbf{X'})' = \mathbf{X}$		Involution Law
$\mathbf{X} + \mathbf{Y} = \mathbf{Y} + \mathbf{X}$	XY = YX	Commutativity
$\mathbf{X} + (\mathbf{Y} + \mathbf{Z}) = (\mathbf{X} + \mathbf{Y})$	$\mathbf{Y}) + \mathbf{Z} \qquad \mathbf{X}(\mathbf{Y}\mathbf{Z}) = (\mathbf{X}\mathbf{Y})\mathbf{Z}$	Associativity
$\mathbf{X}(\mathbf{Y} + \mathbf{Z}) = \mathbf{X}\mathbf{Y} + \mathbf{X}\mathbf{Z}$	$\mathbf{Z} \qquad \mathbf{X} + \mathbf{Y}\mathbf{Z} = (\mathbf{X} + \mathbf{Y})(\mathbf{X} + \mathbf{Y})(\mathbf{X})(\mathbf{X} + \mathbf{Y})(\mathbf{X} + \mathbf{Y})(\mathbf{X})(\mathbf{X} + \mathbf{Y})(\mathbf{X})$	Z) Distributivity
$\mathbf{X} + \mathbf{X}\mathbf{Y} = \mathbf{X}$	$\mathbf{X}(\mathbf{X} + \mathbf{Y}) = \mathbf{X}$	Absorption Law
$\mathbf{X} + \mathbf{X'Y} = \mathbf{X} + \mathbf{Y}$	$\mathbf{X}(\mathbf{X'} + \mathbf{Y}) = \mathbf{X}\mathbf{Y}$	Simplification
$(\mathbf{X} + \mathbf{Y})' = \mathbf{X}'\mathbf{Y}'$	$(\mathbf{X}\mathbf{Y})' = \mathbf{X}' + \mathbf{Y}'$	DeMorgan's Law
XY + X'Z + YZ	$(\mathbf{X} + \mathbf{Y})(\mathbf{X'} + \mathbf{Z})(\mathbf{Y} + \mathbf{Z})$	Consensus Theorem
$= \mathbf{X}\mathbf{Y} + \mathbf{X}'\mathbf{Z}$	$= (\mathbf{X} + \mathbf{Y})(\mathbf{X'} + \mathbf{Z})$)

BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

DUALITY PRINCIPLE

•BOOLEAN ALGEBRA -PRECEDENCE OF OPER. -FUNCTION EVALUATION -BASIC IDENTITIES

• Duality principle:

- States that a Boolean equation remains valid if we take the dual of the expressions on both sides of the equals sign.
- The dual can be found by interchanging the **AND** and **OR** operators along with also interchanging the **0**'s and **1**'s.
- This is evident with the duals in the basic identities.
 - For instance: DeMorgan's Law can be expressed in two forms

$$(\mathbf{X} + \mathbf{Y})' = \mathbf{X}'\mathbf{Y}'$$
 as well as $(\mathbf{X}\mathbf{Y})' = \mathbf{X}' + \mathbf{Y}'$

BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

FUNCTION MANIPULATION (1)

•BOOLEAN ALGEBRA -FUNCTION EVALUATION -BASIC IDENTITIES -DUALITY PRINCIPLE

• Example: Simplify the following expression

```
\mathbf{F} = \mathbf{B}\mathbf{C} + \mathbf{B}\overline{\mathbf{C}} + \mathbf{B}\mathbf{A}
```

• Simplification

 $F = B(C + \overline{C}) + BA$ $F = B \cdot 1 + BA$ F = B(1 + A) F = B

INTRO. TO COMP. ENG. CHAPTER III-10 BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

FUNCTION MANIPULATION (2)

•BOOLEAN ALGEBRA -BASIC IDENTITIES -DUALITY PRINCIPLE -FUNC. MANIPULATION

• Example: Simplify the following expression

 $\mathbf{F} = \mathbf{A} + \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\mathbf{D} + \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}}\mathbf{E}$

• Simplification

$$F = A + \overline{A}(B + \overline{B}C + \overline{B}\overline{C}D + \overline{B}\overline{C}\overline{D}E)$$

$$F = A + B + \overline{B}C + \overline{B}\overline{C}D + \overline{B}\overline{C}\overline{D}E$$

$$F = A + B + \overline{B}(C + \overline{C}D + \overline{C}\overline{D}E)$$

$$F = A + B + C + \overline{C}D + \overline{C}\overline{D}E$$

$$F = A + B + C + \overline{C}(D + \overline{D}E)$$

$$F = A + B + C + D + \overline{D}E$$

$$F = A + B + C + D + E$$

INTRO. TO COMP. ENG. CHAPTER III-11 BOOLEAN ALGEBRA

BOOLEAN ALGEBRA

FUNCTION MANIPULATION (3)

•BOOLEAN ALGEBRA -BASIC IDENTITIES -DUALITY PRINCIPLE -FUNC. MANIPULATION

• Example: Show that the following equality holds

$$\mathbf{A}(\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{B}\mathbf{C}) = \overline{\mathbf{A}} + (\mathbf{B} + \mathbf{C})(\overline{\mathbf{B}} + \overline{\mathbf{C}})$$

• Simplification

$$\overline{\mathbf{A}(\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{B}\mathbf{C})} = \overline{\mathbf{A}} + \overline{(\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{B}\mathbf{C})}$$
$$= \overline{\mathbf{A}} + \overline{(\overline{\mathbf{B}}\overline{\mathbf{C}})(\overline{\mathbf{B}}\overline{\mathbf{C}})}$$
$$= \overline{\mathbf{A}} + (\mathbf{B} + \mathbf{C})(\overline{\mathbf{B}} + \overline{\mathbf{C}})$$

BOOLEAN ALGEBRA

STANDARD FORMS

SOP AND POS

•BOOLEAN ALGEBRA -BASIC IDENTITIES -DUALITY PRINCIPLE -FUNC. MANIPULATION

- Boolean expressions can be manipulated into many forms.
- Some standardized forms are required for Boolean expressions to simplify communication of the expressions.
 - Sum-of-products (SOP)
 - Example:

 $F(A, B, C, D) = AB + \overline{B}C\overline{D} + AD$

- Products-of-sums (POS)
 - Example:

$$F(A, B, C, D) = (A + B)(\overline{B} + C + \overline{D})(A + D)$$

BOOLEAN ALGEBRA

STANDARD FORMS

MINTERMS

•BOOLEAN ALGEBRA •STANDARD FORMS -SOP AND POS

• The following table gives the minterms for a three-input system

			m_0	<i>m</i> 1	<i>m</i> ₂	m ₃	m_4	m_5	m ₆	m_7
Α	В	С	ĀBC	ĀBC	ĀBĒ	ĀBC	ABC	ABC	ABC	ABC
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

BOOLEAN ALGEBRA

STANDARD FORMS

SUM OF MINTERMS

•BOOLEAN ALGEBRA •STANDARD FORMS -SOP AND POS -MINTERMS

- **Sum-of-minterms** standard form expresses the Boolean or switching expression in the form of a **sum of products** using **minterms**.
 - For instance, the following Boolean expression using minterms

 $F(A, B, C) = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + A\overline{B}C$

could instead be expressed as

 $F(A, B, C) = m_0 + m_1 + m_4 + m_5$

or more compactly

 $F(A, B, C) = \sum m(0, 1, 4, 5) = one-set(0, 1, 4, 5)$

Minterms are products, so this is called a "sum of products" (SOP)

INTRO. TO COMP. ENG. CHAPTER III-15 BOOLEAN ALGEBRA					STANDARD FORMS MAXTERMS					•STANDARD FORMS -SOP AND POS -MINTERMS -SUM OF MINTERMS		
•	The	foll	owir	ng table giv	ves the	e maxte	rms for	a thre e	e-input	syste	m	
				M_0	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	M_4	M_5	<i>M</i> ₆	<i>M</i> ₇	
				A + B + C		$A + \overline{B} + 0$	C Ā	+ B + (+ B +	C	
	Α	В	С	Α	+ B +	Č A	$\mathbf{A} + \mathbf{\overline{B}} + \mathbf{\overline{0}}$	Ā Ž	+ B + 0	C .	$\overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$	
	0	0	0	0	1	1	1	1	1	1	1	
	0	0	1	1	0	1	1	1	1	1	1	
	0	1	0	1	1	0	1	1	1	1	1	
	0	1	1	1	1	1	0	1	1	1	1	
	1	0	0	1	1	1	1	0	1	1	1	
	1	0	1	1	1	1	1	1	0	1	1	
	1	1	0	1	1	1	1	1	1	0	1	
	1	1	1	1	1	1	1	1	1	1	0	

BOOLEAN ALGEBRA

STANDARD FORMS

PRODUCT OF MAXTERMS

•STANDARD FORMS -MINTERMS -SUM OF MINTERMS -MAXTERMS

- Product-of-maxterms standard form expresses the Boolean or switching expression in the form of product of sums using maxterms.
 - For instance, the following Boolean expression using maxterms

 $F(A, B, C) = (A + B + \overline{C})(\overline{A} + B + C)(\overline{A} + \overline{B} + \overline{C})$

could instead be expressed as

 $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = M_1 \cdot M_4 \cdot M_7$

or more compactly as

 $F(A, B, C) = \prod M(1, 4, 7) = zero-set(1, 4, 7)$

INTRO. TO COMP. ENG. CHAPTER III-17 BOOLEAN ALGEBRA

STANDARD FORMS

MINTERM AND MAXTERM EXP.

•STANDARD FORMS -SUM OF MINTERMS -MAXTERMS -PRODUCT OF MAXTERMS

• Given an arbitrary Boolean function, such as

 $F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C})$

how do we form the canonical form for:

- sum-of-minterms
 - Expand the Boolean function into a sum of products. Then take

each term with a missing variable **X** and **AND** it with $\mathbf{X} + \overline{\mathbf{X}}$.

- product-of-maxterms
 - Expand the Boolean function into a product of sums. Then take each factor with a missing variable **X** and **OR** it with $X\overline{X}$.

BOOLEAN ALGEBRA

STANDARD FORMS

FORMING SUM OF MINTERMS

•STANDARD FORMS -MAXTERMS -PRODUCT OF MAXTERMS -MINTERM & MAXTERM

• Example $F(A, B, C) = AB + \overline{B}(\overline{A} + \overline{C}) = AB + \overline{A}\overline{B} + \overline{B}\overline{C}$ $= AB(C + \overline{C}) + \overline{A}\overline{B}(C + \overline{C}) + (A + \overline{A})\overline{B}\overline{C}$ $= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + A\overline{B}\overline{C} + AB\overline{C} + ABC$ $= \sum m(0, 1, 4, 6, 7)$

Minterms listed as 1s in Truth Table

INTRO. TO COMP. ENG. CHAPTER III-19 BOOLEAN ALGEBRA	STA FORMIN	NDARD FO NG PROD OF MA	RMS XTERMS	•STANDARD FORMS -PRODUCT OF MAXTERMS -MINTERM & MAXTERM -FORM SUM OF MINTERMS
 Example F(A, B, C) = AB + 	$\overline{\mathbf{B}}(\overline{\mathbf{A}}+\overline{\mathbf{C}})$	\mathbf{S}) = $\mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}} + \overline{\mathbf{A}}$	ΞĒ	
$= (\mathbf{A} + \mathbf{A})$ $= (\mathbf{A} + \mathbf{A})$	\mathbf{B})(\mathbf{A} + \mathbf{B} $\mathbf{\overline{B}}$ + $\mathbf{C}\mathbf{\overline{C}}$)($\mathbf{\overline{C}}$)($(\mathbf{A} + \mathbf{B} + \mathbf{C})(\mathbf{A} + \mathbf{B} + \mathbf{C})$ $(\mathbf{A} + \mathbf{\overline{B}} + \mathbf{\overline{C}})(\mathbf{\overline{A}} + \mathbf{B})$	(3 + C	using distributivity)
$= (\mathbf{A} + \mathbf{A})$ $= \prod M(\mathbf{A})$	$\overline{B} + C)(A$ (2, 3, 5)	$\mathbf{A} + \mathbf{\overline{B}} + \mathbf{\overline{C}})(\mathbf{\overline{A}} + \mathbf{B} + \mathbf{\overline{C}})$	+ C)	Maxterms are sums, so this is called a product of sums" (POS)
A 0 0 0 0 1 1 1 1	B C 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1	$ \begin{array}{c c} F \\ 1 \\ 1 \\ 0 \\ -2 \\ 0 \\ -3 \\ 1 \\ 0 \\ -5 \\ 1 \\ 1 \end{array} $	Maxte 0s in	erms listed as Truth Table

Full Solution of Maxterm Example

F(A,B,C) = AB + B'(A'+C') AB + A'B' + B'C' (AB + A') * (AB + B') + B'C' [(B + A') * (A + B')] + B'C' Distributivity (OR) X(Y+Z) = XY+XZ Distributivity (AND) Identity, X + YZ = (X+Y)(X+Z) Simplification Identity, X + X'Y = X + Y

Distributivity (AND) Identity, X = [(B + A') * (A + B')], Y = B', Z = C')

([(B + A') * (A + B')] + B') * ([(B + A') * (A + B')] + C')

Distributivity (AND) Identity on each ANDed term: $X = \mathbf{B'}$ and $\mathbf{C'}$ (respectively) $Y = (B + \mathbf{A'}), Z = (A + \mathbf{B'})$)

((A' + B + B') * (A + B' + B')) * ((A' + B + C') * (A + B' + C'))

Idempotent and Identity – drop ($\mathbf{A'} + \mathbf{B} + \mathbf{B'}$), is always 1, X+X'=1, X+1=1, X*1=X also X+X=X

(A + B') * (A' + B + C') * (A + B' + C')

Expand (A + B') = (A + B' + CC') since CC'=0, X+0=X

 $(A + B') = (A + B' + C)^*(A + B' + C')$

F(A,B,C) = (A + B' + C) (A + B' + C') (A' + B + C') where (A + B' + C') was duplicated, X + X = X.

Maxterms (1 where A,B, or C is **complemented** in a term): 010, 011, 101 = 2, 3, 5

General Rule for Expanding SOP or POS to Maxterms or Minterms

If a term is missing one variable, it expands to two minterms or maxterms.

If a term is missing two variables, it expands to four minterms or maxterms.

If a term is missing N variables, it expands to 2^N minterms or maxterms.

Examples for **F(A,B,C,D)** - replicate incomplete term with every possible combination of complemented and non-complemented missing variables:

Minterms

ABC = ABCD + ABCD'

AB = ABCD + ABCD' + ABC'D + ABC'D'

A = ABCD + ABCD' + ABC'D + ABC'D' + AB'CD + AB'CD' + AB'C'D + AB'C'D'

Maxterms

A+B+C = (A+B+C+D) (A+B+C+D')

A+B = (A+B+C+D) (A+B+C+D') (A+B+C'+D) (A+B+C'+D')

$$A = (A+B+C+D) (A+B+C+D') (A+B+C'+D) (A+B+C'+D')* (A + B'+C+D) (A + B'+C+D') (A + B'+C'+D) (A + B'+C'+D')$$

INTRO. TO COMP. ENG. CHAPTER III-20 BOOLEAN ALGEBRA

STANDARD FORMS

CONVERTING MIN AND MAX

•STANDARD FORMS -MINTERM & MAXTERM -SUM OF MINTERMS -PRODUCT OF MAXTERMS

- Converting between sum-of-minterms and product-of-maxterms
 - The two are complementary, as seen by the truth tables.
 - To convert interchange the Σ and \prod , then use missing terms.
 - Example: The example from the previous slides

$$F(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \sum m(0, 1, 4, 6, 7)$$

F'(A,B,C) = SUM m(2,3,5)

is re-expressed as

$$F(A, B, C) = \prod M(2, 3, 5)$$

 $F'(A, B, C) = PI M(0, 1, 4, 6, 7)$

where the numbers 2, 3, and 5 were missing from the minterm representation.

BOOLEAN ALGEBRA

SIMPLIFICATION

KARNAUGH MAPS

•STANDARD FORMS -SUM OF MINTERMS -PRODUCT OF MAXTERMS -CONVERTING MIN & MAX

 Often it is desired to simplify a Boolean function. A quick graphical approach is to use Karnaugh maps.

INTRO. TO COMP. ENG. CHAPTER III-22 BOOLEAN ALGEBRA

SIMPLIFICATION

KARNAUGH MAP ORDERING

•STANDARD FORMS •SIMPLIFICATION -KARNAUGH MAPS

• Notice that the ordering of cells in the map are such that moving from one

cell to an adjacent cell only changes one variable.

• This ordering allows for grouping of minterms/maxterms for simplification.

BOOLEAN ALGEBRA

SIMPLIFICATION

IMPLICANTS

•STANDARD FORMS •SIMPLIFICATION -KARNAUGH MAPS -KARNAUGH MAP ORDER

Implicant

- Bubble covering only 1's (size of bubble must be a power of 2).
- Prime implicant
 - Bubble that is expanded as big as possible (but increases in size by powers of 2).
- Essential prime implicant
 - Bubble that contains a **1** covered only by itself and no other prime implicant bubble.
- Non-essential prime implicant
 - All contained **1's** can be covered by another prime implicant bubble.

BOOLEAN ALGEBRA

SIMPLIFICATION

PROCEDURE FOR SOP

•SIMPLIFICATION -KARNAUGH MAPS -KARNAUGH MAP ORDER -IMPLICANTS

- Procedure for finding the SOP from a Karnaugh map
 - Step 1: Form the 2-, 3-, or 4-variable Karnaugh map as appropriate for the Boolean function.
 - Step 2: Identify all essential prime implicants for **1's** in the Karnaugh map.
 - Step 3: Identify non-essential prime implicants to cover remaining 1's in the Karnaugh map (not covered in step 2).
 - Step 4: For each essential implicant and selected non-essential prime implicants (that cover all 1's), determine the corresponding product term.
 - Step 5: Form a sum-of-products with all product terms from previous step.

INTRO. TO COMP. ENG. CHAPTER III-25 BOOLEAN ALGEBRA

SIMPLIFICATION

EXAMPLE FOR SOP (1) SOP: SUM OF PRODUCTS •SIMPLIFICATION -KARNAUGH MAP ORDER -IMPLICANTS -PROCEDURE FOR SOP

• Simplify the following Boolean function

 $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \sum m(0, 1, 4, 5) = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\mathbf{C}$

• Solution:

zero-set(2, 3, 6, 7) *one-set*(0, 1, 4, 5)

- The essential prime implicants are $\overline{\mathbf{B}}$.
- There are no non-essential prime implicants.
- The sum-of-products solution is $\mathbf{F} = \overline{\mathbf{B}}$.

• Simplify the following Boolean function

 $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \sum m(0, 1, 4, 6, 7) = \overline{\mathbf{A}}\overline{\mathbf{B}}\overline{\mathbf{C}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}} +$

• Solution:

- The essential prime implicants are \overline{AB} and AB.
- The non-essential prime implicants are $\overline{B}\overline{C}$ or $A\overline{C}$.
- The sum-of-products solution is

```
\mathbf{F} = \mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}} + \overline{\mathbf{B}}\overline{\mathbf{C}} \text{ or } \mathbf{F} = \mathbf{A}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}} + \mathbf{A}\overline{\mathbf{C}}.
```

BOOLEAN ALGEBRA

SIMPLIFICATION

PROCEDURE FOR POS POS: PRODUCT OF SUMS •SIMPLIFICATION -IMPLICANTS -PROCEDURE FOR SOP -EXAMPLE FOR SOP

- Procedure for finding the SOP from a Karnaugh map
 - Step 1: Form the 2-, 3-, or 4-variable Karnaugh map as appropriate for the Boolean function.
 - Step 2: Identify all essential prime implicants for **0'**s in the Karnaugh map
 - Step 3: Identify non-essential prime implicants to cover remaining **0'**s in the Karnaugh map.
 - Step 4: For each essential and the selected non-essential prime implicants from each set, determine the corresponding sum term.
 - Step 5: Form a product-of-sums with all sum terms from previous step.

INTRO. TO COMP. ENG. CHAPTER III-28 BOOLEAN ALGEBRA

SIMPLIFICATION

EXAMPLE FOR POS (1) POS: PRODUCT OF SUMS •SIMPLIFICATION -PROCEDURE FOR SOP -EXAMPLE FOR SOP -PROCEDURE FOR POS

• Simplify the following Boolean function

 $\mathbf{F}(\mathbf{A},\mathbf{B},\mathbf{C}) = \prod M(2,3,5) = (\mathbf{A} + \overline{\mathbf{B}} + \mathbf{C})(\mathbf{A} + \overline{\mathbf{B}} + \overline{\mathbf{C}})(\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}})$

• Solution:

- The essential prime implicants are $\overline{A} + B + \overline{C}$ and $A + \overline{B}$.
- There are no non-essential prime implicants.
- The product-of-sums solution is $\mathbf{F} = (\mathbf{A} + \overline{\mathbf{B}})(\overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{C}}).$

BOOLEAN ALGEBRA

SIMPLIFICATION

EXAMPLE FOR POS (2)

•SIMPLIFICATION -EXAMPLE FOR SOP -PROCEDURE FOR POS -EXAMPLE FOR POS

Simplify the following Boolean function

$$F(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \prod M(0, 1, 5, 7, 8, 9, 15)$$

- Solution:
 - The essential prime implicants are $\mathbf{B} + \mathbf{C}$ and $\overline{\mathbf{B}} + \overline{\mathbf{C}} + \overline{\mathbf{D}}$.

The new eccential prime impl

• The non-essential prime implicants can be $\mathbf{A} + \overline{\mathbf{B}} + \overline{\mathbf{D}}$ or $\mathbf{A} + \mathbf{C} + \overline{\mathbf{D}}$.

• The product-of-sums solution can be either

$$\mathbf{F} = (\mathbf{B} + \mathbf{C})(\overline{\mathbf{B}} + \overline{\mathbf{C}} + \overline{\mathbf{D}})(\mathbf{A} + \overline{\mathbf{B}} + \overline{\mathbf{D}})$$

or

$$\mathbf{F} = (\mathbf{B} + \mathbf{C})(\overline{\mathbf{B}} + \overline{\mathbf{C}} + \overline{\mathbf{D}})(\mathbf{A} + \mathbf{C} + \overline{\mathbf{D}})$$

zero-set(0, 1, 5, 7, 8, 9, 15) *one-set*(2, 3, 4, 6, 10, 11, 12, 13, 14)

BOOLEAN ALGEBRA

SIMPLIFICATION

DON'T-CARE CONDITION

•SIMPLIFICATION -EXAMPLE FOR SOP -PROCEDURE FOR POS -EXAMPLE FOR POS

- Switching expressions are sometimes given as incomplete, or with don'tcare conditions.
 - Having don't-care conditions can simplify Boolean expressions and hence simplify the circuit implementation.
 - Along with the *zero-set*() and *one-set*(), we will also have *dc*().
 - Don't-cares conditions in Karnaugh maps
 - Don't-cares will be expressed as an "X" or "-" in Karnaugh maps.
 - Don't-cares can be bubbled along with the 1s or 0s depending on what is more convenient and help simplify the resulting expressions.

- Solution:
 - The essential prime implicants are $\mathbf{B}\overline{\mathbf{D}}$ and $\overline{\mathbf{B}}\mathbf{C}$.
 - There are no non-essential prime implicants.
 - The sum-of-products solution is $\mathbf{F} = \overline{\mathbf{B}}\mathbf{C} + \mathbf{B}\overline{\mathbf{D}}$.

- Solution:
 - The essential prime implicants are $\mathbf{B} + \mathbf{C}$ and $\overline{\mathbf{B}} + \overline{\mathbf{D}}$.
 - There are no non-essential prime implicants.
 - The product-of-sums solution is $\mathbf{F} = (\mathbf{B} + \mathbf{C})(\overline{\mathbf{B}} + \overline{\mathbf{D}})$.