INTRO. TO COMP. ENG.	•CHAPTER I
CHAPTER I-1	
INTRODUCTION	
>	

WELCOME

TO

ECE 2030: Introduction to Computer Engineering*

Richard M. Dansereau rdanse@pobox.com

Copyright © by R.M. Dansereau, 2000-2001

* ELEMENTS OF NOTES AFTER W. KINSNER, UNIVERSITY OF MANITOBA

INTRO. TO COMP. ENG. CHAPTER I-2

PRELIMINARIES

GOAL

•WELCOME

INTRODUCTION

LEARN BASICS BEHIND COMPUTER SYSTEMS

- Hardware architecture and organization
- Digital logic design
 - Switching and logic gate design
- Computer architecture building blocks
 - Adders/subtractors/counters
 - Shift/rotate registers
 - Multiplexers/demultiplexers and encoders/decoders
 - Controllers and sequencers
- Software mapping to hardware
 - Instruction types and assembly languages
 - OS issues, branching, jumping, interrupts, subroutines

INTRO. TO COMP. ENG. CHAPTER I-3

PRELIMINARIES

OBJECTIVES

•WELCOME •PRELIMINARIES -GOAL

INTRODUCTION

APPRECIATION OF:

• Computer system architectures and organization

KNOWLEDGE OF:

- Taxonomy of computing structures
- Switching and Boolean algebra
- Combinational logic and sequential logic
- Building blocks to computer architectures
- State machines, finite states machines
- Instruction types and addressing modes
- Single and multi-cycle data path units, microcode
- Software execution in hardware for higher level operating systems

INTRO. TO COMP. ENG CHAPTER I-8 INTRODUCTION	SYSTEM I	STEM DESCRIPTION	•SYSTEM -GENERIC SYSTEM -HIERARCHY IN A SYSTEM -NAND GATE EXAMPLE	
SYSTEM LEVEL: -Processors, memories, peripherals -Words, files, records, programs -HDL, natural language				
REGISTER-TRANSFER LEVEL: -Registers, ALUs, buses, CCUs -Bytes, words, double words -Block diagrams, state diagrams				
LOGIC LEVEL:	-Gates, flip-flo -1, 0, X (unkno -Logic diagrar	-Gates, flip-flops -1, 0, X (unknown); Strong, weak, Z -Logic diagrams, boolean equations		
CIRCUIT LEVEL:	-R, C, L, Diod -Voltage, curr -Schematic di	-R, C, L, Diodes, Transistors -Voltage, current, temperature -Schematic diagrams, circuit equations		
SILICON LEVEL:	Elements: Values: Description:	-nPN & PNP tran -Voltage, current -Device models,	sistors, CMOS , temp., fields interconnects	

INTRO. TO COMP. ENG. CHAPTER I-9 INTRODUCTION

SYSTEM

LEVELS OF INTEGRATION

•SYSTEM -HIERARCHY IN A SYSTEM -NAND GATE EXAMPLE -SYSTEM DESCRIPTION

- Small scale integration (SSI)
 - ~10 transistors
 - Individual gates, flip-flops
- Medium scale integration (MSI)
 - 10-100 transistors
 - Adders, encoders/decodors, multiplexers, shift registers, counters
- Large scale integration (LSI)
 - 100-10,000 transistors
 - small memories, ROMs, PLAs, small memories
- Very-large scale integration (VLSI)
 - > 10,000 transistors
 - microprocessors, DSP chips, large memories

INTRO. TO COMP. ENG. CHAPTER I-13 INTRODUCTION

BINARY

BINARY NUMBERS

•SYSTEM •ANALOG VS. DIGITAL •BINARY -BINARY LOGIC LEVELS

- Binary numbers are base 2 as opposed to base 10 typically used.
- Instead of decimal places such as 1s, 10s, 100s, 1000s, etc., binary uses powers of two to have 1s, 2s, 4s, 8s, 16s, 32s, 64s, etc. places.

Examples:

$$\mathbf{101}_2 = (\mathbf{1} \times \mathbf{2^2}) + (\mathbf{0} \times \mathbf{2^1}) + (\mathbf{1} \times \mathbf{2^0}) = \mathbf{4}_{10} + \mathbf{1}_{10} = \mathbf{5}_{10}$$

$$10111_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) = 23_{10}$$

 $00101111_2 = (1 \times 2^5) + (1 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 47_{10}$

• We will discuss binary numbers and binary arithmetic in a little more depth later.