ECE2030b - HW-5 v.2 Due Monday 10/21 during class. - ANSWERS

Problem 1. Using Finite State Machine techniques, design a circuit to:

Detect when sequential input X delivers 3 logic 1's in a row. Do not detect overlapping sequences.

Example:

A. Draw a State Diagram showing all possible states and transitions.

B. Draw a logic table for the Next State bits (Ni) and the Output bit (Q), as a function of Present State bits (Pi) and Input bit (X).

C. Draw Karnaugh maps for the separate outputs, Ni and Q.

D. Draw a logic diagram showing the necessary registers and combinatorial logic blocks.

A. State Diagram (Meely)

Check List: Does every state have exits defined for all inputs (0,1)?

Meely					
Present	State	Input	Next	State	Output*
P1	P0	Х	N1	NO	Q
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	0	1
1	1	0	0	0	0
1	1	1	0	0	0

B. Logic or Truth Tables:

For Meely Machine, output occurs while machine is in state 10 and X=1.

Moore Machine:

Moore					
Present	State	Input	Next	State	Output*
P1	P0	Х	N1	NO	Q
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	0	1	1

For Moore Machine, output occurs while machine is in state 11. Logic for Q can be designed as a function of N1,N0

B. Karnaugh Maps for Moore Machine:

N1: X \ P1,P0	00	01	11	10
0	0	0	0	0
1	0	1	0	1

N1 = X (P1' P0 + P1 P0') = X (P1 XOR P0)

N0:	Х	\	P1,P0	00	01	11	10
			0	0	0	0	0
			1	1	0	1	1

N0 = X (P0' + P1)

Q: P1 \ P0		0	1
	0	0	0
	1	0	1

Q = P0 P1 (note: for Moore Machine, Q is function of present state (P1,P0).

D. Logic Diagram (Moore)

Solution as a Meely Machine is also acceptable.