ECE2030b - HW-5 v. 2 Due Monday 10/21 during class. - ANSWERS
Problem 1. Using Finite State Machine techniques, design a circuit to:
Detect when sequential input X delivers 3 logic 1 's in a row.
Do not detect overlapping sequences.
Example:
Input: 01101111011111001111110
Output: 00000010000100000010010
A. Draw a State Diagram showing all possible states and transitions.
B. Draw a logic table for the Next State bits (Ni) and the Output bit (Q), as a function of Present State bits (Pi) and Input bit (X).
C. Draw Karnaugh maps for the separate outputs, Ni and Q .
D. Draw a logic diagram showing the necessary registers and combinatorial logic blocks.
A. State Diagram (Meely)

State Diagram (Moore)

Check List: Does every state have exits defined for all inputs (0,1)?
B. Logic or Truth Tables:

Meely					
Present	State	Input	Next	State	Output*
P1	P0	X	N1	N0	Q
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	0	0	1
1	1	0	0	0	0
1	1	1	0	0	0

- For Meely Machine, output occurs while machine is in state 10 and $X=1$.

Moore Machine:

Moore					
Present	State	Input	Next	State	Output*
P1	P0	X	N1	N0	Q
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
1	1	0	0	0	$\mathbf{1}$
1	1	1	0	$\mathbf{1}$	$\mathbf{1}$

For Moore Machine, output occurs while machine is in state 11. Logic for Q can be designed as a function of $N 1, N 0$
B. Karnaugh Maps for Moore Machine:

$\mathrm{N} 1: \mathrm{X}$	\backslash	$\mathrm{P} 1, \mathrm{P} 0$	00	01	11	10
	0	0	0	0	0	
	1	0	1	0	1	

$\mathrm{N} 1=\mathrm{X}\left(\mathrm{P} 1^{\prime} \mathrm{P} 0+\mathrm{P} 1 \mathrm{P} 0^{\prime}\right)=\mathrm{X}(\mathrm{P} 1 \mathrm{XOR} \mathrm{P} 0$)

$\mathrm{N} 0: \mathrm{X}$	\backslash	$\mathrm{P} 1, \mathrm{P} 0$	00	01	11	10
	0	0	0	0	0	
	1	1	0	1	1	

$$
\mathrm{N} 0=\mathrm{X}\left(\mathrm{P} 0^{\prime}+\mathrm{P} 1\right)
$$

Q: P1 \P0	0	1	
	0	0	0
	1	0	1

Q = P0 P1 (note: for Moore Machine, Q is function of present state (P1,P0).
D. Logic Diagram (Moore)

Solution as a Meely Machine is also acceptable.

